Semi-Supervised Learning of Sequence Models with the Method of Moments

نویسندگان

  • Zita Marinho
  • André F. T. Martins
  • Shay B. Cohen
  • Noah A. Smith
چکیده

We propose a fast and scalable method for semi-supervised learning of sequence models, based on anchor words and moment matching. Our method can handle hidden Markov models with feature-based log-linear emissions. Unlike other semi-supervised methods, no decoding passes are necessary on the unlabeled data and no graph needs to be constructed— only one pass is necessary to collect moment statistics. The model parameters are estimated by solving a small quadratic program for each feature. Experiments on part-of-speech (POS) tagging for Twitter and for a low-resource language (Malagasy) show that our method can learn from very few annotated sentences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Learning of Sequence Models with Method of Moments

We propose a fast and scalable method for semi-supervised learning of sequence models, based on anchor words and moment matching. Our method can handle hidden Markov models with feature-based log-linear emissions. Unlike other semi-supervised methods, no decoding passes are necessary on the unlabeled data and no graph needs to be constructed— only one pass is necessary to collect moment statist...

متن کامل

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

Anchored Discrete Factor Analysis

We present a semi-supervised learning algorithm for learning discrete factor analysis models with arbitrary structure on the latent variables. Our algorithm assumes that every latent variable has an “anchor”, an observed variable with only that latent variable as its parent. Given such anchors, we show that it is possible to consistently recover moments of the latent variables and use these mom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016